If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-35=3x^2-4x
We move all terms to the left:
21x^2-35-(3x^2-4x)=0
We get rid of parentheses
21x^2-3x^2+4x-35=0
We add all the numbers together, and all the variables
18x^2+4x-35=0
a = 18; b = 4; c = -35;
Δ = b2-4ac
Δ = 42-4·18·(-35)
Δ = 2536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2536}=\sqrt{4*634}=\sqrt{4}*\sqrt{634}=2\sqrt{634}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{634}}{2*18}=\frac{-4-2\sqrt{634}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{634}}{2*18}=\frac{-4+2\sqrt{634}}{36} $
| (5x-1)+(5x-1)+(4x-9)+130=360 | | 6x+1=3x19 | | 16+12=-3z+7z | | 10(1.375)^18t=60 | | 4a+4a=43+5 | | .087=5/x | | 4-3/5m=6/5m+2 | | -10q-6=-9q | | 3(-1)y=-4 | | -3.74-8j=4.54+5.8j | | 15+(2•x)=62.98 | | –6+10h=9h | | 3n=7n+10 | | 10=m10 | | -7j-9=1-6j | | r•13=13 | | q+56=64 | | (X-9)2+(y-4)2=36 | | 7x−9=5+9x | | 7s−9=5+9s | | 2c/12=8.8 | | 6x=20–4x | | 2(h+5)=-11 | | 0=–6v+6v | | -6w^2=18 | | 3x4+12x2=6x3 | | 10(x+3)=6(2x+12) | | 6(x+3)=10(2x+12) | | 5×(m+2)=20 | | r^2-2r-63=0 | | 5x+1=6x5 | | 10g2=40 |